ããããSNSã®çžäºããã«æ°åŠå¥œãã®äººãããããã§ããããã¿ã€ã ã©ã€ã³ã«æ°åŠåé¡ã®ãã¹ããããæµããŠããã
æ°åŒèšç®ã®åæ¥ã§è§£ããªãããªããªãåé¡ã¯ã解ããŠã解ããªããŠãããŸãææ ãæ»ãç«ãŠãããããšã¯ãªãã
ãšã¬ã¬ã³ãã«è§£ããåé¡ãããã®ããã§è§£ãããšãçœå¿«æãæãããéã«è§£ããããªåé¡ã解ããªããšãåœç¶ãªããæããã
ãªãã€ãŒãããæé溶ãããã ãšæãããããèšãåºãããSNSèªäœãæ ¹æ¬çãªãæé溶ãããã«éããªããã
Â
äœæ¥ãåã«ããããªåé¡ãæµããŠããã
å ãã¹ãããµã«ããŒãžã§ããªãã£ãã®ã§ãè³å åçãããã®ã§ããããã®è³å åçãšããè¡çºãæ²è ã ã£ãã
å ã«ãæãããŠãããŸãããã®å³åœ¢ã¯ããã©ã«ã¡ãããã®ã§ãããå®éã®å¯žæ³ã§ã¯äœå³äžèœã§ãã
åïŒçŽè§äžè§åœ¢ABCã®æ蟺ACãé·ã6ãçŽè§ã§ãªãè§BACã®2çåç·ãšèŸºBCã®äº€ããç¹ãDãšããCDãé·ã2ã§ãããäžè§åœ¢ABDã®é¢ç©ãæ±ããã
Â
åºé¡è ã®ã奜ããªåé¡ããéãäžéã®å ¬åŒã®ç¥èã§ã¯è§£ããªãããšããã³ã¡ã³ããšãã«ãâ BAD=â DACã®ãšãAB:AC=BD:DCããšãããã³ã(ïŒ)ãã€ããŠããã
Â
ç§ã¯ãŸããã³ããèŠãŠãããã ã£ãã£ãïŒ ã³ã¬ã©ããã£ãŠèšŒæãããã ïŒããšèããŠããŸã£ãã蚌ææ¹æ³ãæãã€ããªãã£ãã
ããããããŠãããã¡ãé®®ãããªæ£è§£ã瀺ãããªãã®äžã€ãç®ã«å ¥ã£ãŠããŸã£ãã
ãâ³ABDãADã§æãæ²ãããšãCDã¯â³ã®é«ãã«ãªãããã£ãŠâ³ABD=6Ã2/2
=6â ã
ãããããïŒ
Â
æ°åŠã®èšèã䜿ããšã次ã®ããã«ãªãã§ãããã
ãã®å³ããŸããªãªãžãã«ã®åé¡ã§ã¯ãªãç§ãèšæ¶ãé Œãã«åçŸãããã®ã§ãå®å¯žæ³ã«ããäœå³ã¯äžèœã§ããããã
DããABã«äžãããåç·ã®è¶³ãEãšãããšãâ³ACDâ¡â³AEDããã£ãŠâ³ABDã¯åºèŸºé·=6ãé«ã2ããã£ãŠâ³ABD=6Ã2/2=6â
Â
ãâ BAD=â DACã®ãšãAB:AC=BD:DCã䜿ãããïŒ ãã¹ããªãŒã§ããã¬ããã»ããªã³ã°(ç»è£œã€ã¯ã·=ç®ãããŸã)ãšãããã€ãïŒ
ãšãã«ãã®å ¬åŒãããã£ãããèªåã§ã¯èšŒæã§ãããããã£ãŠããŸã£ãã
ãã¡ãã®ãµã€ãã®åŸåã«ãé®®ãããªèšŒæãèŒã£ãŠããã
ãã¯ãè£å©ç·ã䜿çšããŠããããè£å©ç·ã®åŒãæ¹ãäžæ²åé¡ã解ãå Žåãšããããéã£ãŠããã
ãšããããšã¯ããã¯ãèªåã§è§£ãã«ã¯çžåœãªå°é£ã䌎ã£ãã§ãããã
ããŒããæããã
è¿œèšïŒ
â³ABDãšâ³ADCã«ã€ããŠ
AB,ACãåºèŸºãED=CDãé«ããšèŠãŠé¢ç©ãèšç®ããŠã
BD,CDãåºèŸºãAC=ACãé«ããšèŠãŠé¢ç©ãèšç®ããŠã
çµæãçããããšãã
AB:AC=BD:CD (ïŒâ³ABDãšâ³ADCã®é¢ç©æ¯)
ã蚌æããããšãã§ããããã§ãããªãã»ã©ïŒ
è¿œèšããã
Â
ãšããããšã§ããããŸã§ãèªããã°ãã¿ã«ããããšæã£ãŠ1æç®ãš2æç®ã®å³åœ¢ãäœå³ããããšããã
å ã«ãæãããéããå®å¯žæ³ã§ã¯äœå³ã§ããªãã£ãããªãã§ã ïŒïŒ
以äžããã®æ¢çŽ¢ã§ããããããŸã§ã¯äžåŠæ°åŠã§ãã£ããã以äžã¯äžè§é¢æ°ã埮åæ³ãªã©é«æ ¡æ°åŠã䜿ãã
åŒããã°ã¯ã¢ãã£ãªãšã€ãåºåãå©çšããŠããŸã
Â
Â
äžå¿è§ÎžãååŸ1ã®æ¥µåº§æšã°ã©ããæããŠã¿ããæããã«æ倧å€ãååšããããšãããããæžã蟌ãŸãªãã£ããã©ååšäžã®ç¹ãAãåç¹ãBãçŽè§ãCã§ããã
ãããããšãæ倧å€ã¯ããã€ããšããæ°ããªå³åœ¢åé¡ãç«ã¡äžãã£ãã
â BACã®2çåè§ãÏãšçœ®ããšãäžè§åœ¢ã®å è§ã®åèšã¯180°=Ïã ãã
Ï=1/2(Ï-Ï/2-Ξ)=Ï/4-Ξ/2
ACã®é·ãã¯sinΞãâ BACã®2çåç·ãšBCã®äº€ç¹ãDãšãããšã
CD=sinΞtanÏ=sinΞtan(Ï/4-Ξ/2)
Â
æ®å¿µãªãããç§ã«ã¯ãã以äžã®æ°åŒã®ç°¡ç¥åã¯ã§ããªãã£ãã䜿ããããªå ¬åŒããããããåœãŠã¯ããŠã¿ãŠã¯ããã®ã ãã©ã
Â
å人çã«ã次ã«ããããšã¯Excelã«çªã£èŸŒãã§æ°å€çã«ããããããšã ãå·¥åŠéšåºèº«è ã®çºæ³ã ãšæã£ãŠããã
sinΞãšsinΞtan(Ï/4-Ξ/2)ã®ã°ã©ããã0âŠÎžâŠÏã®ç¯å²ã§æããŠã¿ãã
Ξâ0.2Ïä»è¿ã«0.3ã»ã©ã®æ倧å€ãããããšãèŠãŠåããã
Â
æ倧å€ã§ã¯(sinΞtan(Ï/4-Ξ/2))ã®Îžã«ãã埮åå€ã0ã«ãªãã
ã ã
(sinΞtan(Ï/4-Ξ/2))'=cosΞtan(Ï/4-Ξ/2)-sinΞ/2cos^2(Ï/4-Ξ/2)
ã ããã解æçã«åŸ®åå€ãŒããšãªãΞãæ±ããã®ã¯ããããã«ãã£ããããã ã
ãã£ãŠããŸãããŠãExcelã§åæ¥ã§ãŽãªãŽãªèšç®ããŠã¿ããΞ=0.66ïœ0.67(çŽ38°)ä»è¿ã«åŸ®åå€ãŒãããªãã¡æ¥µå€§å€ãããããã®ãšãã®CDé·ã¯çŽ0.3ã®ããã ã£ãã
Ξ | CDé· | CDé·åŸ®åå€ |
0.64 | 0.2999 | 0.0289 |
0.65 | 0.3001 | 0.0178 |
0.66 | 0.3003 | 0.0068 |
0.67 | 0.3003 | -0.0041 |
0.68 | 0.3002 | -0.0148 |
0.69 | 0.3000 | -0.0255 |
ãã ãçŽ38°ãšããæ°å€ã«ãã©ã®ãããªæå³ãããã®ãã¯ãããããããªãã
ãã®ãããã解æçã«Îžã«ã€ããŠè§£ããã°ãããåé¡ã«ãªããããªãã ãã©ãªã
ãã解ããã®ã§ããã°ã誰ããã²æããŠãã ããã
Â
æåã®å³ã«æ»ã£ãŠãAB=6ã§ããã°CDã¯ããã6Ã0.3=1.8ãè¶ ããªãããã£ãŠAB=6ãCD=2ãšããå³åœ¢ã¯æããªãã£ãã®ã ïŒ
Â
ãšãäœãšããã£ãŠããåãã§ãå ãã¹ãã®æ€çŽ¢ããã£ãŠããã
ãµã«ããŒãžã«æåãããã¹ã¬ããºã ã£ãïŒ
ãããããïŒ AB=15ãCD=4ã ã£ãã®ã ïŒ
ãããªãå³åœ¢ãç¡çãªãæããïŒ(15Ã0.3=4.5ïŒ4)
åœç¶ã£ã¡ãåœç¶ã ãã©ããã¯ãèšæ¶ã¯ããŠã«ãªããªãã
Â
ã ãããããªãã«æ¥œããŸããŠããã£ããããããã£ãããšã«ããããããããæé溶ããã§ããã°ãåŸæã¯ããªãã
åŒããã°ã¯ã¢ãã£ãªãšã€ãåºåãå©çšããŠããŸã
Â
Â